How anthropology can contribute to mathematics education
Keywords:
Ethnomathematics, Multimathemacy, Situated Learning, Navajo Indians, Turkish Immigrants, Urban Boundaries Project, Etnomatemática, Multimatemacia, Aprendizagem Situada, Índios Navajos, Imigrantes Turcos, Projeto Fronteiras UrbanasAbstract
Abstract
This paper starts from two statements based on a literature review. The first one concerns the learning process and states that learning is situated and socioculturally contextualized. Learning happens in the space of the background and the foreground of the learner in his or her particular environment of experience. This statement is based on the Vygotsky and the Cultural psychology approach (Cole, 1996) and on the work of Vithal & Skovsmose (1997).
The second statement concerns the deficient theory of the learning process (instead of the deficiently of the learner). Based on the international comparative research on mathematical skills we claim that the drop out of school of many groups of children (OECD, 2010) has to do with the insufficient learning system at school that fail to fit with the daily background knowledge of the children.
In the final part of the paper we will present three different ethnomathematical cases based on the educational practices that the authors developed in recent years.
Resumo
Este artigo começa a partir de duas afirmações com base em uma revisão de literatura. A primeira diz respeito ao processo de aprendizagem e afirma que a aprendizagem está situada e contextualizada socioculturalmente. A aprendizagem acontece no background e no foreground do aprendiz em seu ambiente particular de experiência. Esta afirmação baseia-se na abordagem de Vygotsky e a Psicologia Cultural (Cole, 1996) e no trabalho de Vithal e Skovsmose (1997).
A segunda afirmação diz respeito à teoria deficiente do processo de aprendizagem (em vez da deficiência do aluno). Com base em pesquisa comparativa internacional sobre as competências matemáticas reivindicamos que o abandono da escola por parte de muitos grupos de crianças (OECD, 2010) tem a ver com o sistema de aprendizagem insuficiente na escola que não se encaixa com o conhecimento do background diário das crianças.
Na parte final deste artigo apresentaremos três diferentes casos etnomatemáticos baseados nas práticas educativas que os autores desenvolveram nos últimos anos.
Downloads
References
Alrø, H., Ravn, O., & Valero, P. (Eds.). (2010).Critical Mathematics Education: Past,Present and Future. Festschrift for Ole Skovsmose. Rotterdam: Sense Publishers.
Atran, S. (1990). Cognitive foundations of natural history: Towards an anthropology of science. Cambridge: Cambridge University Press.
Bishop, A. J. (1988). The interactions of mathematics education with culture. Cultural Dynamics, 1(2), 145-157.
Chronaki, A. (2011). Disrupting 'development' as the quality/equity discourse: Cyborgs and subalterns in school technoscience. In Atweh, B., Graven, M., Secada, W., & Valero, P. (Eds.), Mapping equity and quality in mathematics education (pp. 3–19). Dordrecht: Springer.
Cole, M. (1996). Cultural psychology: A once and future discipline. Cambridge: Harvard University Press.
D‘Ambrosio, U. (1990). The History of Mathematics and Ethnomathematics. How a Native Culture Intervenes in the Process of Learning Science. Impact of Science on Society. 40(4), 369-377.
Ernest, P. (1991). The philosophy of mathematics education. London: Falmer Press.
Howard, P., Cooke, S., Lowe, K., & Perry, B. (2011). Enhancing Quality and Equity in Mathematics Education for Australian Indigenous Students. In B. Atweh, M. Graven, W. Secada, & P. Valero (Eds.), Mapping equity and quality in mathematics education (pp. 365–378). Dordrecht: Springer.
Lave, J. (1988). Cognition in practice. Mind, mathematics, and culture in everyday life. Cambridge: Cambridge University Press.
Lave, J., Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.
Mesquita, M., Restivo, S., & D‘Ambrosio, U. (2011). Asphalt Children and City Streets. A Life, a City and a Case Study of History, Culture, and Ethnomathematics in São Paulo. Rotterdam: Sense Publishers.
OECD (2005). PISA 2003 technical report. Paris: OECD Publishing.
OECD (2010). Educational research and innovation. Educating teachers for diversity. Meeting the challenge. Paris: OECD Publishing.
Piaget, J. (Ed.) (1972). Structuralisme et épistémologie génétique. Paris: Pléiade.
Pinxten, R., van Dooren, I., & Harvey, F. (1983). Anthropology of space. Philadelphia: University of Pennsylvania Press.
Pinxten, R., van Dooren, I., & Soberon, E. (1987). Towards a Navajo geometry. Gent: KKI Books.
Pinxten, R., François, K. (2007). Ethnomathematics in practice. In François, K., Van Bendegem, J.P. (Eds.), Philosophical dimensions in mathematics education. (pp. 213–227). New York: Springer.
Pinxten, R., François, K. (2011). Politics in an Indian canyon. Some thoughts on the implications of ethnomathematics. Educational Studies in Mathematics, 78(2), 261 – 273.
Rosa, M., Orey, D.C. (2009). Symmetrical freedom quilts: the ethnomathematics of ways of communication, liberation, and art. [Os quilts simétricos da liberdade: os modos etnomatemáticos de comunicação, libertação e arte]. Revista Latinoamericana de Etnomatemática, 2(2). 52-75.
Rosa, M., Orey, D.C. (2011). Ethnomathematics: the cultural aspects of mathematics. [Etnomatemática: os aspectos culturais da matemática]. Revista Latinoamericana de Etnomatemática, 4(2), 32-54.
Skovsmose, O. (2005). Travelling through education. Uncertainty, mathematics, responsibility. Rotterdam: Sense Publisher.
Skovsmose, O., Borba, M. (2004). Research methodology and critical mathematics education. In P. Valero, & R. Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education. Issues of power in theory and methodology. Mathematics Education Library, Vol. 35 (pp. 207–226). Dordrecht: Springer.
Vithal, R., Skovsmose, O. (1997). The end of innocence: A critique of ethnomathematics. Educational Studies in Mathematics, 34(2), 131–157.
Vygotsky, L.S. (1962). Thought and Language. Cambridge, Mass.: M.I.T. Press.
Whitehead, A.N. (1906). On Mathematical Concepts of the Material World. In Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences.Volume 205 (pp. 465-525). London: Published for the Royal Society by Dulan.
Žižek, S. (1989). The sublime object of ideology. London: Verso.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Once the article is accepted by the Latin American Journal of Ethnomathematics, the authors cede the rights to publish and distribute the text electronically, including storing it and making it available online.
The authors can distribute their own material without soliciting permission from the Latin American Journal of Ethnomathematics, whenever mentioning that the original version is found at http://www.revista.etnomatematica.org
Copyright © 2008, Latin American Journal of Ethnomathematics
All contents of the Latin American Journal of Ethnomathematics are published under the _ and can be used freely, giving credits to the authors and to the Journal, as established by this license.