Una Ethnomathematical Approach to the Idea of Infinity
DOI:
https://doi.org/10.22267/relatem.25181.110Keywords:
Etnomatemática, infinito, kaingang, lógica, ParadojasAbstract
In this paper we propose an approach to the idea of infinity from an ethnomathematical perspective. The hypothesis arises from a work with a group of students of the Indigenous Intercultural Degrees that Unochapecó develops in the Indigenous Lands of the Kaingang people. Starting from the discussion about the translation of certain words of the indigenous language, and especially about "goj-vêhn" which literally means "endless water", that is, a concept that involves a notion of infinity, we propose an approach to this concept that tries to explain how a language that has only five numbers: pir, régre, tãgtu, venhlãgra and pentar, (one, two, three, four and five) also has the notion of infinity. As the concept appears detached from words that refer to quantities, that is, it is not used to refer to quantity, our hypothesis postulates a logical-linguistic sense of this notion that we try to make explicit, relating it to some discussions around the concept of infinity within philosophical, logical, and mathematical thought in the Western tradition.
Downloads
References
Aristóteles, (1999). Metafísica. (P. Azcárate, Trans.) Alicante: Biblioteca Virtual Miguel de Cervantes. Recuperado de http://www.cervantesvirtual.com/nd/ark:/59851/bmczp411.
Bernardi, L. y Santos, J. (201 8). Etnomatemática y Pedagogía Freireana: una expe-riencia intercultural con la comunidad Kaingang. Zetetiké, 26 (1), p. 147-166, 2018. doi.org/10.20396/zet.v26i1.8650727
Bernardi, L. y Santos, J. (2021). Math Education in Intercultural Contexts: a logical-mathematical interpretation for duality Kaingang Kamé-Kairu. Ciência & Educação, 27 (1), p. 1-13. doi.org/10.1590/1516-731320210011.
Blanco-Álvarez, H. (2008). Entrevista al profesor Ubiratan D’Ambrosio. Revista Lati-noamericana de Etnomatemática Perspectivas Socioculturales de la Educación Ma-temática, 1(1), 21-25. Recuperado de https://www.revista.etnomatematica.org/index.php/ RevLatEm/article/view/3.
Cantor G, (2006) [1883], Fundamentos para una teoría general de conjuntos. Editorial Crítica: Barcelona.
Torretti, R. (1998). El paraíso de Cantor. La tradición conjuntista en la filosofía de la ma-temática, Santiago de Chile, Editorial Universitaria, 1998.
Da Silva, R. (2013). Un acercamiento al platonismo absoluto de Cantor. Apuntes filosófi-cos. 22 (42), 24-39. Recuperado de http://saber.ucv.ve/ojs/index.php/revaf/article/view/5651.
D’Ambrósio, U. (1993). Etnomatemática: um programa. Educação Matemática em Revis-ta, 1 (1), 5-11. Recuperado de http://sbem.iuri0094.hospedagemdesites.ws/revista/index.php/ emr/article/view/1936/1316.
Frege, G. (2017). Escritos lógico-filosóficos. Buenos Aires: Colihue.
Gilmer, G. (1995) Una definición de etnomatemática. Boletín ISGEm, v.11, n. 1, p. 188. En Blanco Albarez, H. (2005) (Comp.). Boletines del grupo de estudio internacional de Etnomatemática: ISGEm, 1985-2003. Santiago de Cale: GEM. Recuperado de http://www.etnomatematica.org/home/?page_id=112.
Miarka, R. (2011). Etnomatemática: do ôntico ao ontológico. (Tese de Doutorado). Insti-tuto de Geociências e Ciências Exatas – Universidade Estadual Paulista. Rio Claro, SP.
Russell, B. (1956). Introducción a la filosofía matemática. En Russel, B. (1956). Obras escogidas, Barcelona: Aguilar.
Russell, B. (1968). La autobiografía de Bertrand Russell. Madrid: Aguilar.
Santos, J. y Bernardi, L. (2019). Una Interpretación Lógio-matemática para Dualidad Ka-ingang. Revista Latinoamericana de Etnomatemática. 12 (1), p. 44-60. Recuperado em http://www.revista.etnomatematica.org/index.php/RevLatEm/article/view/468.
Santos, J., Bernardi, L. y Nascimento, M. (2020). Algoritmos y sistemas de parentesco: aproximaciones etnomatemáticas en la formación de profesores indígenas. Boletim de Educação Matemática. Bolema, 34 (67), p. 628-650. doi.org/10.1590/1980-4415v34n67a14.
Tamariz Mascarua, A. (2002). Los infinitos. El paraíso de Cantor. Revista Ciencias, 68, 2002. Recuperado de https://repositorio.unam.mx/contenidos/27623.
Wittgenstein, L. (1994). Tractatus logico-philosophicus. Atalaya: Barcelona.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Once the article is accepted by the Latin American Journal of Ethnomathematics, the authors cede the rights to publish and distribute the text electronically, including storing it and making it available online.
The authors can distribute their own material without soliciting permission from the Latin American Journal of Ethnomathematics, whenever mentioning that the original version is found at http://www.revista.etnomatematica.org
Copyright © 2008, Latin American Journal of Ethnomathematics
All contents of the Latin American Journal of Ethnomathematics are published under the _ and can be used freely, giving credits to the authors and to the Journal, as established by this license.