The interdisciplinarity of ethnomathematics: challenges of ethnomathematics to mathematics and its education

Authors

  • Andrea V. Rohrer Universidade Estadual Paulista Faculdade de Engenharia de Guaratingueta
  • Gert Schubring Universidade Federal do Rio de Janeiro

Keywords:

Ethnomathematics, Interdisciplinarity, Ethnography, Ethnology, Universalism, Etnomatemática, Interdisciplinariedad, Etnografía, Etnología, Universalismo

Abstract

Abstract

Since the creation of the International Study Group on Ethnomathematics, several researchers have debated on how could or should a theory of ethnomathematics exist, and, if so, how it is to be conceptualized. So far, there exists no consensus on how this theory should be defined.
During the last International Conference on Ethnomathematics (ICEm-4) in Towson, Maryland (July, 2010), Rik Pinxten emphasized on the necessity of reopening this debate. Ethnomathematics will only be acknowledged by other scientific communities if we, as ethnomathematicians, are able to establish a proper conceptualization of this field of study.This article aims to at least one possible approach to a conceptualization of a theory of ethnomathematics. As we will show, this theory needs to be regarded as an interdisciplinary discipline that covers theories from both the exact and social sciences.

Resumen

Desde la creación del Grupo Internacional de Estudios Etnomatemáticos, diversos investigadores han debatido sobre cómo podría o debería existir la teoría de las Etnomatemáticas y si ese es el caso, sobre cómo debería ser conceptualizada. Hasta este momento no existe consenso sobre cómo debería ser definida esta teoría.
Durante la conferencia internacional de Etnomatemáticas (ICEm-4) en Towson, Maryland (julio, 2010), Rik Pinxten enfatizó en la necesidad de reabrir este debate. Las Etnomatemáticas solo podrán ser reconocidas por otras comunidades científicas solo si, como Etnomatemáticos, se es posible establecer una conceptualización apropiada para este campo de estudio.

Este artículo tiene como objetivo dar al menos una aproximación sobre la conceptualización de una teoría de la Etnomatemáticas. Como se verá, esta teoría tiene que ser considerada como una disciplina interdisciplinaria que abarca las teorías de las ciencias exactas y sociales.

Downloads

Download data is not yet available.

Author Biographies

Andrea V. Rohrer, Universidade Estadual Paulista Faculdade de Engenharia de Guaratingueta

Profesora Asistente Doctora del Departamento de Matematicas.

Her main interests involve inter- and multi- disciplinary research, history and historiography of science and mathematics, textbooks analyses, ethnography and ethnology, and theory of embodied mathematics within theoretical biology. She lectures Differential and Integral Calculus, and Differential Equations, and is involved in a collaboration project with INSA-Lyon on the development of an e-learning platform for math subjects such as set theory, complex variable, etc.

Gert Schubring, Universidade Federal do Rio de Janeiro

Posee doctorado en matematicas de la Universitat Bielefeld (1977). Actualmente es profesor visitante del Instituto de Matematicas de la Universidade Federal do Rio de Janeiro. Tiene experiencia en el area de Matematicas, con enfasis em Historia de las Matematicas.

References

ISGEm-Newsletter (1985-2003). P. Scott (Ed.), International Study Group on Ethnomathematics. Newsletter.

Alangui, W., Barton, B. (2002). A Methodology for Ethnomathematics. Proceedings of the Second International Conference on Ethnomathematics. Ouro Preto, Brazil: CD-ROM.

D’Ambrosio, U. (1985). Ethnomathematics and its Place in the History and Pedagogy of Mathematics. For the Learning of Mathematics, 5(1), 44-48.

D’Ambrosio, U. (1989). A Research Program and a Course in the History of Mathematics: Ethnomathematics. Historia Mathematica, 16, 285-288.

Domite, M. do C. S. (2002). Etnomatemática e sua Teoria: Teoria da Etnomatemática? Proceedings of the Second International Conference on Ethnomathematics. Ouro Preto, Brazil: CD-ROM.

Falsirol, O. (1959). Per una Maggiore Attenzione all’Etnologia Matematica. Rivista di Antropologia, XLVI, 262-266.

Gerdes, P. (1997). Ethnomatematik dargestellt am Beispiel der Sona Geometrie. Heidelberg, Germany: Spektrum Akademischer Verlag.

Gerdes, P. (2007). Etnomatemática: Reflexões sobre Matemática e Diversidade Cultural. Ribeirão, Portugal: Edições Húmus Lda.

Heckhausen, H. (1972). Discipline and Interdisciplinarity. In L. Apostel (Ed.), Interdisciplinarity: problems of teaching and research in universities; this report is based on the results of a Seminar on Interdisciplinarity in Universities which was organised by CERI in collaboration with the French Ministry of Education at the University of Nice (France) September 7th - 12th , 1970. Paris, France: Organisation for Economic Co-Operation and Development.

Kuhn, T. S. (1962). La Estructura de las Revoluciones Científicas. 1st spanish (1971) edn. Santiago, Chile: Fondo de Cultura Económica Chile S. A. English title: The Structure of Scientific Revolutions.

Masterman, M. (1970). The Nature of a Paradigm. In I. Lakatos & A. Musgrave (Eds.), Criticism and the Growth of Knowledge: Proc. of the Int. Colloquium in the Philosophy of Science, London 1965. (Vol. 4, pp. 59-89). Cambridge, UK: Cambridge University Press.

Nersessian, N. J. (2003). Kuhn, Conceptual Change, and Cognitive Science. In T. Nickles (Ed.), Thomas Kuhn. Cambridge, UK: Cambridge University Press.

Pais, A. (2011). Criticisms and contradictions of ethnomathematics. Educational Studies in Mathematics, 76, 209-230.

Rohrer, A. V. (2010). Ethnomathematics: New Approaches to its Theory and Application. Universität Bielefeld, Germany: unpublished PhD thesis.

Rohrer, A. V., Schubring, G. (2011). Ethnomathematics in the 1930s – the contribution of Ewald Fettweis to the history of ethnomathematics. For the Learning of Mathematics, 31(2), 35-39.

Schubring, G. (2011). Conceptions for relating the evolution of mathematical concepts to mathematics learning – epistemology, history, and semiotics interacting. Educactional Studies in Mathematics, 77, 79-104.

Sebastiani Ferreira, E. (1991). Por uma Teoria da Etnomatemática. Bolema, 6(7), 30-35.

Published

2013-10-05

How to Cite

V. Rohrer, A., & Schubring, G. (2013). The interdisciplinarity of ethnomathematics: challenges of ethnomathematics to mathematics and its education. Latin American Journal of Ethnomathematics: Sociocultural Perspective of Mathematics Education, 6(3), 78-87. Retrieved from https://revista.etnomatematica.org/index.php/RevLatEm/article/view/50